<u>Texas Association of Surgical Skills Laboratories (TASSL) Flexible Endoscopy</u> **Training Curriculum**

Description

Training within a proficiency-based, virtual-reality training program can increase competency and reduce errors and complications during real GI endoscopies. The following curriculum is based on the GI Mentor simulator and intended to promote the acquisition of endoscopic skills.

Objectives

- Practicing and demonstrating proficiency in scope maneuvers requiring hand-eye coordination
- Acquiring essential endoscopic capabilities to a measurable competency level
- Achieving competence in basic colonoscopy skills
- Demonstrating proficiency in colonoscopy required skills, based on validated bench mark level of skills
- Reaching confidence level in complete colonoscopy performance
- Demonstrate proficiency performing a variety of cases for complete diagnostic colonoscopy
- Mastering the performance of upper and lower GI procedures

Specialties

Gastroenterology, General surgery, Gastrointestinal surgery, Internal Medicine

Target Audience

Individuals or groups interested in following a structured curriculum to acquire skills to a predetermined level of proficiency. The acquired skills should be transferable to the real clinical environment, as was demonstrated in various studies.

Assumptions

It is recommended to include a cognitive skills module in the beginning of the training program. No previous procedural or technical knowledge is required.

Suggested Time Length

Proficiency in each segment is to be achieved within a 60 days limit from starting in order to be considered successful.

Authors

This curriculum is based on <u>A multicenter, simulation-based skills training collaborative using shared GI mentor II systems: results from the Texas association of surgical skills laboratories (TASSL) flexible endoscopy.</u>

(Van Sickle KR et al Surg Endosc. 2011 Sep;25(9):2980-6), Van Sickle KR, Buck L, Willis R, Mangram A, Truitt MS, Shabahang M, Thomas S, Trombetta L, Dunkin B, Scott D.

The study was performed by the University of Texas Health Science Center—San Antonio (UTHSCSA), Texas A & M University (TAMU), Methodist Hospital (MHD), Brooke Army Medical Center (BAMC), and University of Texas Southwestern (UTSW).

Introduction to Curriculum – Instructors

Training with a proficiency-based, virtual-reality curriculum may reduce errors during real GI procedures. The evaluation metrics are done automatically by the GI Mentor.

The curriculum could be performed as a self-directed learning, following pre-established goals through a modular curriculum.

The following is quoted from the above study (Van Sickle KR et al Surg Endosc. 2011 Sep;25(9):2980-6)

Flexible Endoscopy Training Curriculum:

PGY-1, 2, 3, 4 surgery residents **Eligible Subjects** Involved TASSL programs Pre-test Questionnaire **Baseline Testing** 1 Trial EndoBubble I 1 Trial EndoBubble II 1 Trial, Case #1, Module 1 Colonoscopy with **GAGES Score Sheet**

Training

EndoBubble, Level I o 19/20 balloons 78 seconds (max) o 2 wall strike errors allowed o 2 consecutive trials EndoBubble, Level II o 21/40 balloons o 89 seconds (max) 2 wall strike errors allowed o 2 consecutive + 5 non-consecutive trials

Post-testing

Post-test Questionnaire 1 Trial, Case #1, Module 1 Colonoscopy with **GAGES Score Sheet** Program evaluation & feedback

Fig. 1 Study protocol including training paradigm and testing

Table 2 EndoBubble training criteria

Endo Bubble 1	19/20 balloons	78 s	≤2 Wall strike errors
Endo Bubble 2	21/40 balloons	89 s	≤2 Wall strike errors

Training Data:

	EndoBubble 1	EndoBubble 2
No. of trials to proficiency	13 ± 10	22 ± 16
Range	2-48	5-70
Proficiency levels, difficulty 1 (easy) to 5 (hard)	2.1 ± 0.9	3.4 ± 0.7
Training protocol appropriateness (1 = not appropriate; 5 = appropriate)	4.2	4.3

Performance Data:

	Before	After	p Value
GAGES	14.9 ± 2.4	19.6 ± 1.5	0.001
Mucosal surface (%)	85.6 ± 3.6	85.7 ± 3.7	NS
Screening efficiency (%)	84.8 ± 13.5	93.0 ± 1.7	0.002
Clear view time (%)	94.8 ± 1.8	95.1 ± 3.4	NS
Cecal intubation time (s)	229 ± 97	152 ± 57	0.001
Total procedure time (s)	454 ± 147	334 ± 115	0.001
Colon looped time (s)	21 ± 30	12 ± 22	NS
Total errors	10	6	NS
Lumen view lost (n)	0.6 ± 1.3	0.0 ± 0.2	0.024

Paired samples t-test (mean differences); df = 35, two-tailed

Self Assessment Data:

	Before	After	p Value
Comfort levels w/flex endo tasks (range, 0–8)	3.4 ± 3.0	7.2 ± 1.2	0.001
Endoscopy self-rating (range, 0–4)	1.5 ± 1.0	2.7 ± 0.6	0.001

Task Descriptions and Curriculum Steps

The trainee is required to independently follow a structured step-by-step curriculum set in a hierarchical order, incorporating three consecutive segments:

- A. **Baseline Testing**
- B. Hands-on Training
- C. Post Training Testing