

LaserForm[®] Ti Gr1 (A)

Commercially pure titanium fine-tuned for use with ProX[®] DMP 320; metal powder perfectly suited for medical applications and implants as LaserForm Ti Gr1 (A) is the purest Ti grade, known for its excellent biocompatibility and high ductility.

LaserForm Ti Gr1 (A) is formulated and fine-tuned specifically for 3D Systems DMP 320 metal 3D Printers to deliver highest part quality and best part properties. The print parameter database that 3D Systems provides together with the material has been extensively developed, tested and optimized in 3D Systems' part production facilities that hold the unique expertise of printing 500,000 challenging production parts year over year. Based on over 1000 test samples the below listed part quality data and mechanical properties give you high planning security. And for a 24/7 production 3D Systems' thorough Supplier Quality Management System guarantees consistent, monitored material quality for reliable process results.

Material Description

Commercially pure titanium is perfectly suited for medical applications because of its low stiffness and excellent biocompatibility. Grade 1 titanium is the most ductile medical titanium grade, rendering it ideal for implants, such as bone plates and other fixation devices, which need to be molded manually during surgery to fit the patient. Similar to other titanium grades, Grade 1 titanium has excellent corrosion resistance, including chloride and cavitation corrosion resistance.

Classification

Parts built with LaserForm Ti Gr1 Alloy have a chemical composition that complies with ASTM F67, ASTM B265, ASTM B348 (grade 1), ISO 5832-2, ISO 13782 and Werkstoff Nr. 3.7025 standards.

Mechanical Properties 1,2,5

MEASUREMENT	CONDITION	METRIC		U.S.	
	CONDITION	AFTER STRESS RELIEF	AFTER HIP	AFTER STRESS RELIEF	AFTER HIP
Youngs modulus (GPa ksi)	ASTM E8M	105-120	105-120	15000-17500	15000-17500
Ultimate Strength (MPa ksi)	ASTM E8M				
Horizontal direction — XY Vertical direction — Z		500 ± 30 500 ± 30	460 ± 30 460 ± 30	73 ± 4 73 ± 4	67 ± 4 67 ± 4
Yield strength Rp0.2% (MPa ksi)	ASTM E8M				
Horizontal direction — XY Vertical direction — Z		380 ± 30 380 ± 30	340 ± 20 340 ± 20	55 ± 4 55 ± 4	50 ± 1 50 ± 1
Elongation at break (%)	ASTM E8M				
Horizontal direction — XY Vertical direction — Z		29 ± 5 30 ± 5	$\begin{array}{c} 36\pm5\\ 36\pm5 \end{array}$	29 ± 5 30 ± 5	36 ± 5 36 ± 5
Reduction of area (%)	ASTM E8M				
Horizontal direction — XY Vertical direction — Z		53 ± 5 53 ± 6	58 ± 10 60 ± 10	53 ± 5 53 ± 6	58 ± 10 60 ± 10
Hardness, Rockwell B		85 ± 5	80 ± 5	85 ± 5	80 ± 5
Impact toughness (J/cm² lb.ft) ^{3,4}	ASTM E23	Typical 80-120	Typical 35-45	Typical 60-88	Typical 26-33

Thermal Properties⁶

MEASUREMENT	CONDITION	METRIC	U.S.
Thermal conductivity (W/(m.K) Btu/(h.ft².°F))	At 50 °C / 120 °F	16	9,25
Coefficient of Thermal Expansion (μm/m-°C μm/in-°F)	In the range of 20 to 600 °C	7.17	3.98
Melting point (°C °F)		1668	3070

¹ Parts manufactured with standard parameters on a ProX DMP 320, Config A ² HIP indicate hot isostatic pressing post treatment

³ Tested with charpy V-notch toughness test, DMV probe

⁴ Values based on minimum and maximum ranges

⁵ Values based on average and standard deviation

⁶ Values based on literature

LaserForm[®] Ti Gr1 (A)

Physical Properties

		METRIC		U.S.	
MEASUREMENT	CONDITION	AS BUILT AND AFTER STRESS RELIEF	AFTER HIP	AS BUILT AND AFTER STRESS RELIEF	AFTER HIP
Density — Relative, based on pixelcount (%)	Optical method	> 99.9		> 99.9	
Density — Absolute theoretical ⁵ (g/cm³ lb/in³)		4.51		0.163	

Microstructure after stress relief

Surface Quality⁴

MEACUDEMENT	METRIC	U.S.	
MEASOREMENT	SANDBLASTED	SANDBLASTED	
Surface Roughness Horizontal direction (XY) (μm μin)	4-8	160-310	
Vertical direction (Z) (µm µin)	4-8	160-310	

Microstructure after HIP

Chemical Composition

Ti	Bal.
Ν	≤0.03
С	≤0.08
н	≤0.015
Fe	≤0.20
0	≤0.18
Residuals (each)	≤0.1
Residuals (total)	≤0.4

⁴ Parts manufactured with standard parameters on a ProX DMP 320, Config B ⁵ Values based on literature

3D SYSTEMS

www.3dsystems.com

Warranty/Disclaimer: The performance characteristics of these products may vary according to product application, operating conditions, or with end use. 3D Systems makes no warranties of any type, express or implied, including, but not limited to, the warranties of merchantability or fitness for a particular use.

©2017 by 3D Systems, Inc. All rights reserved. Specifications subject to change without notice. 3D Systems, ProX and LaserForm are registered trademarks and the 3D Systems logo is a trademark of 3D Systems, Inc.