

LaserForm[®] CoCrF75 (A)

Cobalt-chromium-molybdenum alloy fine-tuned for use with ProX DMP 320 metal printer producing industrial parts with high corrosion and wear resistance that also require high temperature resistance. In addition to various industrial applications, LaserForm CoCrF75 (A) is also suitable for medical applications.

LaserForm CoCrF75 (A) is formulated and fine-tuned specifically for 3D Systems DMP 320 metal 3D Printers to deliver high part quality and consistent part properties. The print parameter database that 3D Systems provides together with the material has been extensively developed, tested and optimized in 3D Systems' part production facilities that hold the unique expertise of printing 500,000 challenging metal production parts in various materials year over year. And for your 24/7 production 3D Systems' thorough Supplier Quality Management System guarantees consistent, monitored material guality for reliable results.

Material Description

Cobalt-chromium-molybdenum alloys are known for their high strength and hardness and retain these properties even at elevated temperatures. In addition, they spontaneously form a protective passive film, which makes LaserForm CoCrF75 (A) both corrosion resistant and biocompatible.

These benefits make LaserForm CoCr75 (A) the ideal material for medical tools and devices, molds and dies, industrial, high wear applications and parts requiring high strength at elevated temperatures. In biomedical applications, LaserForm CoCr75 (A) is ideal for dental implants and prostheses.

Classification

The chemical composition of LaserForm* CoCr F75 conforms to the requirements of the ASTM F75, ISO 5832 and ISO 22674 standards, and is indicated in the table below in wt%.

Mechanical Properties^{1,2,3}

MEASUREMENT	CONDITION	METRIC		U.S.	
	CONDITION	AFTER ANNEAL	AFTER HIP	AFTER ANNEAL	AFTER HIP
Youngs modulus (GPa ksi)	ASTM E8M	225 ± 5	225 ± 5	32650 ± 730	32650 ± 730
Ultimate strength (MPa ksi)	ASTM E8M				
Horizontal direction - XY Vertical direction - Z		1030 ± 70 1000 ± 30	1020 ± 70 950 ± 40	150 ± 10 145 ± 5	150 ± 10 140 ± 5
Yield strength Rp0.2% (MPa ksi)	ASTM E8M				
Horizontal direction - XY Vertical direction - Z		540 ± 30 520 ± 30	510 ± 30 475 ± 20	80 ± 5 75 ± 5	75 ± 5 70 ± 5
Elongation at break (%)	ASTM E8M				
Horizontal direction - XY Vertical direction - Z		29 ± 6 29 ± 4	29 ± 6 23 ± 3	29 ± 6 29 ± 4	29 ± 6 23 ± 3
Hardness, Rockwell C	ASTM E18	25 ± 5	39 ± 3	25 ± 5	39 ± 3
Impact toughness⁴ (J ft-lb)	ASTM E23	52 ± 3	NA	39±2	NA

Thermal Properties⁵

MEASUREMENT	CONDITION	METRIC	U.S.
Thermal conductivity (W/(m.K) Btu/(h.ft².°F))	at 20°C / 120 °F	14	8
CTE - Coefficient of thermal expansion (μm/(m.°C) μ inch/(inch. °F))	in the range of 20 to 600 °C	14	8
Melting range (°C °F)		1350 - 1430	2460 - 2610

Parts manufactured with standard parameters on a ProX DMP 320, Config B
Values based on average and standard deviation
HIP indicates hot isostatic pressing post treatment

Tested with Charpy V-notch impact test specimens type A at room temperature
Values based on literature

NA = Not available

LaserForm[®] CoCrF75 (A)

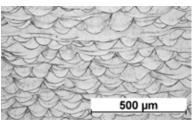
Electrical Properties⁵

MEASUREMENT	METRIC	U.S.
Electrical resistivity (nΩ.m μΩ.in)	874	34

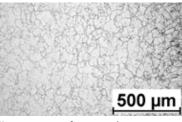
Physical Properties

	METRIC		U.S.	
MEASUREMENT	AS BUILT AND AFTER STRESS RELIEF	AFTER HIP	AS BUILT AND AFTER STRESS RELIEF	AFTER HIP
Density				
Relative, based on pixel count ¹ (%)	>99,9	≈100	>99,9	≈100
Absolute theoretical⁵ (g/cm³ lb/in³)	8.35		0.302	

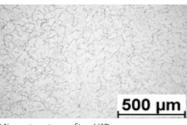
Surface Quality¹


MEASUREMENT	METRIC		U.S.	
MEASOREMENT	AS BUILT	SAND BLASTED	AS BUILT	SAND BLASTED
Surface Roughness R _a				
Vertical direction (Ζ) (μm μin)	9 - 13	3 - 5	350 - 510	120 - 200

Chemical Composition


% OF WEIGHT		
Bal.		
27.00-30.00		
5.00-7.00		
≤0.50		
≤0.75		
≤0.35		
≤1.00		
≤1.00		
≤0.20		
≤0.020		
≤0.010		
≤0.25		
≤0.10		

¹ Parts manufactured with standard parameters on a


- ProX DMP 320, Config B
- Values based on literature

Microstructure as built

Microstructure after anneal

Microstructure after HIP

3D SYSTEMS

www.3dsystems.com

Tel: +1 803 326 3930

Warranty/Disclaimer: The performance characteristics of these products may vary according to product application, operating conditions, or with end use. 3D Systems makes no warranties of any type, express or implied, including, but not limited to, the warranties of merchantability or fitness for a particular use.

©2017 by 3D Systems, Inc. All rights reserved. Specifications subject to change without notice. 3D Systems, ProX and LaserForm are registered trademarks and the 3D Systems logo is a trademark of 3D Systems, Inc.